Asymptotic Expansion of Operator-Valued Laplace Transform

J. J. Williams and R. Wong
University of Manitoba, Winnipeg, Manitoba, Canada
Communicated by Yudell L. Luke

1. Introduction

Let $f(t)$ be a locally integrable function on $[0, \infty)$, and let

$$
\mathscr{L}_{f}(z)=\int_{0}^{\infty} f(t) e^{-z t} d t
$$

whenever the integral on the right converges. The well-known lemma of Watson [4] states that if $f(t)$ satisfies the following two conditions:
(I) $f(t)=\sum_{n=1}^{\infty} a_{n} t^{n / r-1}, \quad|t| \leqslant c+\delta$,
where r, c and δ are positive;
(II) There exist positive constants M_{0} and b independent of t such that

$$
|f(t)|<M_{0} e^{b t}, \quad t \geqslant c ;
$$

then

$$
\mathscr{L}_{f}(z) \sim \sum_{n=1}^{\infty} a_{n} \Gamma(n / r) z^{-n / r},
$$

as $z \rightarrow \infty$ in $|\arg z| \leqslant \pi / 2-\Delta, \Delta>0$.
Recently Professor Luke asked the second author the following question. Consider the Laplace transform

$$
\mathscr{L}_{f}(A)=\int_{0}^{\infty} f(t) e^{-t A} d t,
$$

where the parameter A is a square matrix with positive eigenvalues. Is there an analog of Watson's lemma for this matrix-valued Laplace transform? The present paper is intended to answer this question affirmatively, when A is a normal matrix. We in fact prove a rather general result for an operatorvalued Laplace transform, from which the matrix case is shown to follow.

2. Preliminaries

Let X be a Banach space over the complex field \mathbb{C} and Y be a dense subspace of X. Let A be a closed linear operator from Y into X. The set $\rho(A)$ of complex numbers λ for which $\lambda I-A$ has a bounded inverse $R_{\lambda}(A)=(\lambda I-A)^{-1}$ on X, I being the identity operator, is called the resolvent set of A. The operator $R_{\lambda}(A)$ is called the resolvent of A. The spectrum of A, denoted by $\sigma(A)$, is the complement of $\rho(A)$. The number $r(A)=\sup \{|\lambda|: \lambda \in \sigma(A)\}$ is called the spectral radius of A.

Lemma 1.

(a) $\sigma(A)$ is a closed set.
(b) If A has a bounded inverse A^{-1} on $X, \lambda \neq 0$ and $\lambda \in \sigma(A)$, then $\lambda^{-1} \in \sigma\left(A^{-1}\right)$.

Proof. (a) is well known: see, for example, [5, p. 211]. To prove (b), we suppose that $\lambda^{-1} \in \rho\left(A^{-1}\right)$. Let $B=\left(-\lambda^{-1} A^{-1}\right) R_{\lambda^{-1}}\left(A^{-1}\right)$ and $C=R_{\lambda-1}\left(A^{-1}\right)\left(-\lambda^{-1} A^{-1}\right)$. Note that B and C are bounded operators on X, and that

$$
C(\lambda I-A) y=y \quad(y \in Y), \quad(\lambda I-A) B x=x \quad(x \in X)
$$

Hence, $B=C$ and $\lambda I-A$ has a bounded inverse, i.e., $\lambda \in \rho(A)$, which is a contradiction.

Throughout this section we shall assume that A satisfies the following conditions:
$\left(C_{1}\right) \quad$ There exists a positive Δ such that

$$
\sigma(A) \subseteq\{\lambda \in \mathbb{C}: \lambda \neq 0 \text { and }|\arg \lambda| \leqslant \pi / 2-\Delta\}
$$

$\left(C_{2}\right) \quad$ Let $\omega(A)=\inf \{\operatorname{Re} \lambda: \lambda \in \sigma(A)\}$. There exist $M>0$ and $0<\omega_{1} \leqslant \omega(A)$ such that for any positive integer n,

$$
\left\|R_{\lambda}(A)^{n}\right\| \leqslant M /\left(\omega_{1}-\lambda\right)^{n}
$$

for all real $\lambda<\omega_{1}$.
Note that $\omega(A)>0$, by Lemma 1(a).
Let $K=1+M\left(1+\omega_{1}^{-1}\right)$. Then for $\lambda \leqslant 0$,

$$
\left\|R_{\lambda}(A)\right\| \leqslant K /(1+|\lambda|)
$$

Let Γ be the contour consisting of the two half-lines

$$
\arg (\lambda-1 / 4 K)= \pm(\pi-\arcsin (1 / 2 K))
$$

For any $0<\alpha<\infty$, we define [3, p. 111]

$$
\begin{equation*}
A^{-\alpha}=\frac{1}{2 \pi i} \int_{\Gamma} \lambda^{-\alpha} R_{\lambda}(A) d \lambda \tag{1}
\end{equation*}
$$

These are bounded linear operators (the integrals converge in norm), they form a semigroup, and for every positive integer $n, A^{-n}=\left(A^{-1}\right)^{n}$.

Since A satisfies conditions C_{1} and C_{2}, it follows from [2, p. 95] that there exists a strongly continuous semigroup, $\left\{e^{-t, A}: 0 \leqslant t<\infty\right\}$, of bounded linear operators on X such that

$$
\begin{equation*}
\left\|e^{-t A}\right\| \leqslant M e^{-t \omega_{1}}, \quad \text { for all } \quad 0<t<\infty \tag{2}
\end{equation*}
$$

see [2, p. 99].
The following result is given in [3, p. 122]:
Lemma 2. For any $0<\alpha<\infty$,

$$
A^{-\alpha}=\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} t^{\alpha-1} e^{-t A} d t .
$$

3. Main Results

Let $\left\{A_{\alpha}\right\}$ be a net of closed linear operators, each of which satisfies conditions C_{1} and C_{2}. Let $F\left(A_{\alpha}\right), \varphi_{1}\left(A_{\alpha}\right), \ldots, \varphi_{n}\left(A_{\alpha}\right), \ldots$ be bounded linear operators depending on A_{α}. We say that $\left\{\varphi_{n}\left(A_{\alpha}\right)\right\}$ is an asymptotic sequence if for all $n \geqslant 1$

$$
\left\|\varphi_{n+1}\left(A_{\alpha}\right)\right\|=o\left(\left\|\varphi_{n}\left(A_{\alpha}\right)\right\|\right), \quad \text { as } \quad\left\|A_{\alpha}^{-1}\right\| \rightarrow 0
$$

The formal series

$$
\sum_{n=1}^{\infty} a_{n} \varphi_{n}\left(A_{\alpha}\right)
$$

is said to be an asymptotic expansion of $F\left(A_{\alpha}\right)$ if, for every value of $N \geqslant 1$,

$$
\left\|F\left(A_{\alpha}\right)-\sum_{n=1}^{N} a_{n} \varphi_{n}\left(A_{\alpha}\right)\right\|=o\left(\left\|\varphi_{N}\left(A_{\alpha}\right)\right\|\right), \quad \text { as } \quad\left\|A_{\alpha}^{-1}\right\| \rightarrow 0
$$

In this case we write

$$
F\left(A_{\alpha}\right) \sim \sum_{n=1}^{\infty} a_{n} \varphi_{n}\left(A_{\alpha}\right), \quad \text { as } \quad\left\|A_{\alpha}^{-\mathbf{1}}\right\| \rightarrow 0
$$

Let r be a positive constant. By the moment inequality [3, p. 115],

$$
\left\|A_{\alpha}^{-(n+1) / r}\right\| \leqslant\left\|A_{\alpha}^{-n / r}\right\| \cdot\left\|A_{\alpha}^{-1 / r}\right\| \leqslant C_{r}\left\|A_{\alpha}^{-n / r}\right\| \cdot\left\|A_{\alpha}^{-1}\right\|^{1 / r}
$$

where C_{r} is a constant depending only on r. Hence

$$
\varphi_{n}\left(A_{\alpha}\right)=A_{\alpha}^{-n / \tau}, \quad n=1,2, \ldots
$$

forms an asymptotic sequence.
Theorem 1. Let $\left\{A_{\alpha}\right\}$ be a net of closed linear operators, each satisfying conditions C_{1} and C_{2} with the same Δ and M and such that there is some positive η with $\omega_{1}\left(A_{\alpha}\right) \geqslant \eta \omega\left(A_{\alpha}\right)$ for each A_{α}. If $f(t)$ is a function satisfying the conditions (I) and (II) of Watson's lemma, then the bounded linear operator $\mathscr{L}_{f}\left(A_{\alpha}\right)$ has the asymptotic expansion

$$
\mathscr{L}_{f}\left(A_{\alpha}\right) \sim \sum_{n=1}^{\infty} a_{n} \Gamma(n / r) A_{\alpha}^{-n / r}, \quad \text { as } \quad\left\|A_{\alpha}^{-1}\right\| \rightarrow 0
$$

Proof. For convenience we let

$$
\omega_{1, \alpha}=\omega_{1}\left(A_{\alpha}\right) \quad \text { and } \quad \omega_{\alpha}=\omega\left(A_{\alpha}\right)
$$

By hypothesis,

$$
\begin{aligned}
\omega_{1, \alpha}^{-1} & \leqslant \eta^{-1} \sup \left\{(\operatorname{Re} \lambda)^{-1}: \lambda \in \sigma\left(A_{\alpha}\right)\right\} \\
& \leqslant \eta^{-1} \sup \left\{(|\lambda| \sin \Delta)^{-1}: \lambda \in \sigma\left(A_{\alpha}\right)\right\} .
\end{aligned}
$$

Hence it follows that

$$
\begin{align*}
\omega_{1, \alpha}^{-1} & \leqslant \eta^{-1} \sup \left\{|\mu|(\sin \Delta)^{-1}: \mu \in \sigma\left(A_{\alpha}^{-1}\right)\right\} \\
& =\eta^{-1} r\left(A_{\alpha}^{-1}\right)(\sin \Delta)^{-1} \leqslant\left\|A_{\alpha}^{-1}\right\|(\eta \sin \Delta)^{-1} \tag{3}
\end{align*}
$$

in view of Lemma $1(b)$.
Now, fix an integer $N \geqslant 2$. Clearly, there exists a constant C such that for all $t \geqslant 0$, whether $t \leqslant c$ or $t>c$,

$$
\begin{equation*}
\left|f(t)-\sum_{n=1}^{N-1} a_{n} t^{n / r-1}\right| \leqslant C t^{N / r-1} e^{b t} \tag{4}
\end{equation*}
$$

By Lemma 2, we may write

$$
\mathscr{L}_{f}\left(A_{\alpha}\right)-\sum_{n=1}^{N-1} a_{n} \Gamma(n / r) A_{\alpha}^{n / r}=\int_{0}^{\infty}\left[f(t)-\sum_{n=1}^{N-1} a_{n} t^{n / r-1}\right] e^{-t A_{\alpha}} d t .
$$

If $\left\|A_{\alpha}^{-1}\right\| \leqslant \eta \sin \Delta / 2 b$, then $\omega_{1, \alpha} \geqslant 2 b$ by (3) and hence

$$
\left\|\mathscr{L}_{f}\left(A_{\alpha}\right)-\sum_{n=1}^{N-1} a_{n} \Gamma(n / r) A_{\alpha}^{-n / r}\right\| \leqslant C M \int_{0}^{\infty} t^{N / r-1} e^{b t} e^{-\omega_{1}, \alpha^{t}} d t
$$

by virtue of (2) and (4). A simple calculation then gives

$$
\begin{equation*}
\left\|\mathscr{L}_{j}\left(A_{\alpha}\right)-\sum_{n=1}^{N-1} a_{n} \Gamma(n / r) A_{\alpha}^{-n / r}\right\| \leqslant K_{1} \omega_{1, \alpha}^{-N / r} \leqslant K_{2}\left\|A_{\alpha}^{-1}\right\|^{N / r} \tag{5}
\end{equation*}
$$

where K_{1} and K_{2} are positive constants independent of A_{α}. The last inequality follows from (3). Applying the moment inequality [3, p. 115] twice, we have

$$
\begin{aligned}
\left\|A_{\alpha}^{-1}\right\|^{N / r} & \leqslant C_{1}\left\|A_{\alpha}^{-N / r}\right\| \leqslant C_{1}\left\|A_{\alpha}^{-(N-1) / r}\right\| \cdot\left\|A_{\alpha}^{-1 / r}\right\| \\
& \leqslant C_{2}\left\|A_{\alpha}^{-(N-1) / r}\right\| \cdot\left\|A_{\alpha}^{-1}\right\|^{1 / r}
\end{aligned}
$$

where C_{1} and C_{2} depend only on N and r. Therefore, (5) implies

$$
\begin{equation*}
\left\|\mathscr{L}_{f}\left(A_{\alpha}\right)-\sum_{n=1}^{N-1} a_{n} \Gamma(n / r) A_{\alpha}^{-n / r}\right\|=o\left(\left\|A_{\alpha}^{-(N-1) / r}\right\|\right) \quad \text { as } \quad\left\|A_{\alpha}^{-1}\right\| \rightarrow 0 \tag{6}
\end{equation*}
$$

thus proving the theorem.

Corollary. Let $\left\{A_{\alpha}\right\}$ be a net of bounded linear operators on a Hilbert space \mathscr{H}. If each A_{α} is normal and satisfies condition C_{1} with the same Δ, and if $f(t)$ satisfies conditions (I) and (II) of Watson's lemma, then

$$
\mathscr{L}_{f}\left(A_{\alpha}\right) \sim \sum_{n=1}^{\infty} a_{n} \Gamma(n / r) A_{\alpha}^{-n / r}, \quad \text { as } \quad\left\|A_{\alpha}^{-1}\right\| \rightarrow 0
$$

Proof. It suffices to show that each A_{α} satisfies condition C_{2} with $M=1$ and $\omega_{1}\left(A_{\alpha}\right)=\omega\left(A_{\alpha}\right)$. This follows immediately from the fact that for all real $\lambda<\omega\left(A_{\alpha}\right)$, we have

$$
\left\|R_{\lambda}\left(A_{\alpha}\right)^{n}\right\|=\sup _{\mu \in \sigma\left(A_{\alpha}\right)}\left|(\lambda-\mu)^{-n}\right| \leqslant(\omega-\lambda)^{-n}
$$

since A_{α} is normal [1, p. 879].

4. Remarks

The above corollary in particular covers the case when $\left\{A_{\alpha}\right\}$ is a net of $n \times n$ normal matrices. The spectrum $\sigma\left(A_{\alpha}\right)$ in this case is precisely the set of eigenvalues of A_{α}.

If the elements of A are denoted by $a_{i j}$ then the operator norm

$$
\|A\|=\sup _{\|x\|=1}\|A x\|, \quad x \in \mathbb{C}^{n}
$$

used above can be replaced by any one of the following

$$
\|A\|=\sum_{i, j=1}^{n}\left|a_{i j}\right|, \quad\|A\|=\left(\sum_{i, j=1}^{n}\left|a_{i j}\right|^{2}\right)^{1 / 2}, \quad \| A\left|!=\max _{1 \leq i \leqslant n} \sum_{j=1}^{n}\right| a_{i j}
$$

since these norms are all equivalent. Furthermore, if A is a normal matrix then the fractional powers of A can be expressed in a simpler form. Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of A and $D=\operatorname{diag}\left[\lambda_{1}, \ldots, \lambda_{n}\right]$. Since A is normal, there exists a unitary matrix U such that $U^{-1} A U=D$. By (1),

$$
\begin{aligned}
A^{-\alpha} & =\frac{1}{2 \pi i} \int_{\Gamma} \lambda^{-\alpha} R_{\lambda}(A) d \lambda \\
& =U\left(\frac{1}{2 \pi i} \int_{\Gamma} \lambda^{-\alpha} R_{\lambda}(D) d \lambda\right) \cup^{-1}, \quad(0<\alpha<\infty)
\end{aligned}
$$

Since

$$
\frac{1}{2 \pi i} \int_{\Gamma} \frac{\lambda^{-\alpha}}{\lambda-\lambda_{i}} d \lambda=\lambda_{i}^{-\alpha}
$$

we conclude that

$$
A^{-\alpha}=\cup D^{-\alpha} \bigcup^{-1}
$$

where $D^{-\alpha}=\operatorname{diag}\left[\lambda_{1}^{-\alpha}, \ldots, \lambda_{n}^{-\alpha}\right]$.
Finally we remark that in view of the conditions of Watson's lemma, it is tempting to conjecture that the result (6) can be improved to read

$$
\begin{equation*}
\left\|\mathscr{L}_{f}\left(A_{\alpha}\right)-\sum_{n=1}^{N-1} a_{n} \Gamma(n / r) A_{\alpha}^{-n / r}\right\|=o\left(\left\|A_{\alpha}\right\|^{-(N-1) / r}\right) \tag{7}
\end{equation*}
$$

as $\left\|A_{\alpha}\right\| \rightarrow+\infty$. However, this conjecture is false even for diagonal matrices. To see this, we let $f(t)=1+t$ and $A_{\alpha}=\operatorname{diag}\left[1, \alpha, \ldots, \alpha^{n-1}\right]$, where α is a positive parameter tending to infinity. Clearly $\left\|A_{\alpha}\right\|=\alpha^{n-1} \rightarrow+\infty$ and

$$
\left\|\mathscr{L}_{f}\left(A_{\alpha}\right)-A_{\alpha}^{-1}\right\|=\left\|A_{\alpha}^{-2}\right\|=1
$$

Hence (7) is not satisfied.

References

1. N. Dunford and J. T. Schwartz, "Linear Operators, Part II,"Interscience, New York, 1963.
2. A. Friedman, "Partial Differential Equations," Holt, Rinehart and Winston, New York, 1969.
3. S. G. Krein, "Linear Differential Equations in Banach Space," Translations of Mathematical Monographs, Vol. 29, Amer. Math. Soc., Providence, RI, 1971.
4. Y. L. Luke, "The Special Functions and their Approximations," Vol. 1, Academic Press, New York, 1969.
5. K. Yosida, "Functional Analysis," 2nd ed., Springer-Verlag, New York, 1968.
